SYLLABUS

UNDER SKILL DEVELOPMENT CENTRE

DIPLOMA IN

OBSERVATIONAL ASTRONOMY

DURATION- ONE YEAR

Effective from the Academic Session 2025

SIDHO-KANHO-BIRSHA UNIVERSITY

PURULIA, WEST BENGAL

OBSERVATIONAL ASTRONOMY

1ST SEMESTER

Paper Code	TOPIC	CREDIT	INSTRUCTORs
SDOAST 101	Fundamental Physics	3	CB/SML
SDOAST 102	Basic Astronomy	3	SP/SKM
SDOAST 103	Observational Techniques	3	RKD/TB
SDOAST 104	Instruments and Basic Data Analysis	3+2	SM/SKM
SDOASP 105	Practical + Excursion	4+2	SKM/CB /RKD/TB/SM
	Total credit 20, Total Marks 250		

2ND SEMESTER

Paper Code	TOPIC	CREDIT	INSTRUCTORs
SDOAST 201	Stellar Physics	3	SNR
SDOAST 202	Large Scale Structure	3	RC/SC/SS
SDOAST 203	Measurement of Astronomical Quantities	3	TB/RKD
SDOASP 204	Project + Excursion	3+2	
SDOASP 205	Practical	4+2	
	Total credit 20, Total Marks 250		

SYLLABUS

SDOAST 101: Fundamental Physics

Mechanics:

Mechanics of a particle and system of particles: Generalized coordinates. Forces in classical mechanics. Inertial reference frame. Newton laws of motion, Newton's first law of motion example in daily life, Application of first law of motion. Collisions: Elastic and In elastic.

Motion Under Central Forces: Central force, Central orbit. Characteristics of motion under central force. General equation to any central orbit. Arial velocity, Energy in a central force field. Effective potential energy and stability of orbit. Conservation of energy in central motion: Equation of orbit from energy conservation. The two body problem; Motion under inverse square law of force. Properties of ellipse. Kepler's laws of planetary motion. Law of gravitation from Kepler's laws. Celestial dynamics. Kepler's intellectual legacy. Derivation of Kepler's laws. General remarks on Kepler's law. Artificial satellite; Geo-stationary satellite, Eccentricity of orbit of a satellite. Escape velocity.

Gravitation and Gravity: Gravitation. Newton's Law of Gravitation. Gravity in our universe. The Universal law of gravitation; Strength of Gravity, Newton's 2nd theorem; Centrifugal force, Centripetal force; Circular and Escape velocity; Barycenter, center of mass, center of gravity, Barycenter in solar system. Earth-like planets in other solar systems. Gravitational Field, Gravitational potential, Gravitational potential due to a point mass.

Basic Quantum Mechanics: Schrodinger equation and its interpretation; Probability, Normalization; Momentum; The Uncertainty Principle; Blackbody radiation: Stefan-Boltzmann law, Rayleigh and the Ultraviolet Catastrophe, Planck and the quantum mechanical behavior of light, Bosons and Fermions

6 L

CREDIT: 3

Basic Spectroscopy: Fundamentals of Spectroscopy. Basic elements of spectroscopy. Recapitulation and role of quantum mechanics. Different types of spectroscopy. Molecular spectroscopy. Atomic spectroscopy; Atomic emission spectroscopy, Atomic absorption spectroscopy, Atomic fluorescence spectroscopy. Advantages of spectroscopy. Spectrum of hydrogen atom.

10 L

Interaction of electromagnetic waves with matter:

Introduction. Radiation. Types of radiation. General characteristics of EMR. Dual nature of EMR. Non-ionizing vs Ionizing radiation. Nature of matter. Binding energy. Interaction of radiation with matter. Photon-beam interactions. Absorption, Scattering, Photo absorption, Photoelectric effect, Compton effect, Pair production. Rayleigh Scattering. Raman scattering.

SDOAST 102: History of Astronomy

Unit 1: Early Astronomy and Ancient Cultures (10L)

Introduction to Astronomy as a Historical Science: Rise of astronomy, What is astronomy? application of astronomical phenomena to calendars, time-keeping, navigation aid, How do we study its history?

CREDIT: 3

Prehistoric Astronomy: Megaliths, Stonehenge, archaeoastronomy, sky myths

Astronomy in Mesopotamia: Ziggurats, omens, lunar calendars, planetary records

Egyptian Astronomy: Calendars, Sirius, pyramids aligned with stars

Indian Astronomy (Vedic to Siddhantic): historical development of astronomy in India, Aryabhata,

Brahmagupta, Surya Siddhanta

Chinese and Mesoamerican Astronomy: Oracle bones, eclipse records, Mayan calendar

Unit 2: Greek and Hellenistic Astronomy (7L)

Natural Philosophy and the Cosmos: Thales, Anaximander, Pythagoras

The Geocentric Universe: Plato and Aristotle: Celestial spheres, perfection of the heavens

Hipparchus and the Star Catalog: Precession of the equinoxes

Claudius Ptolemy and the Almagest: Epicycles, deferents, geocentric perfection

Critiques and Alternatives: Islamic critiques, early heliocentric hints

Unit 3: Islamic and Medieval Astronomy (8L)

Astronomy in the Islamic Golden Age: Baghdad's observatories, astrolabes, translations

Al-Tusi, Ibn al-Shatir, and Non-Ptolemaic Models: Innovations leading toward heliocentrism

Astronomy in Medieval Europe: Monastic learning, universities, calendar reform

The Transmission of astronomical Knowledge: from Middle East Asia to Europe

Unit 4: The Copernican Revolution (6L)

Nicolaus Copernicus and the Heliocentric Model: "On the Revolutions of the Celestial Spheres"

Tycho Brahe and Precise Observation: Tychonic system, observatories

Johannes Kepler and Laws of Planetary Motion: Ellipses, harmonies of the spheres

Galileo Galilei and the Telescope: Moons of Jupiter, sunspots, phases of Venus

The Church and Science: Galileo's trial and the conflict narrative

Unit 5: Newtonian and Enlightenment Astronomy (6L)

Isaac Newton and Universal Gravitation: Principia, laws of motion

Astronomy in the 18th Century: Halley, cataloguing stars, mapping the sky Astronomy and Navigation: Longitude problem, John Harrison's clock

Philosophical Shifts: From divine cosmos to mechanistic universe

Unit 6: Modern Astronomy and Cosmology (8L)

19th Century Breakthroughs: Spectroscopy, evolution of our concepts of astronomical objects and

classification systems and their effects, astrophysics begins,

The Expanding Universe: Hubble, redshift, nebulae debates

Relativity and Space-Time: Einstein, gravity as curvature

Big Bang and Modern Cosmology: CMB, nucleosynthesis

Exploration and the Telescope Age: Hubble Space Telescope, exoplanets, JWST

Reflections and the Future of Astronomy: The role of AI, SETI, and the long view of cosmic history

SDOAST 103: Observational Techniques

Spherical trigonometry: Concept of spherical trigonometry; great circle and small circle; terrestrial latitude and longitude; spherical triangle; derivation and application of the sine formula.

10 L

CREDIT: 3

Celestial Coordinates: Celestial sphere: concept of celestial sphere, concept of earth-centric system; why and how to define a coordinate system; different types of coordinate systems; Horizontal coordinate system: definition of horizon and variation with terrestrial coordinates; Equatorial coordinate system: definition, concept of equinox and solstice; Concept of solar motion and construction of the ecliptic coordinate system; the galactic coordinate system; conversion between different coordinate systems, concept of circumpolar stars, proper motion and parallax of stars; tutorial with different astronomical problems

25 L

Astronmical Time: Astronomical time systems; Sidereal and Solar time; Definition and concept of Mean Sun; Concept of hour angle; Derivation of rising and setting time of stars; concept of meridian and local sidereal time, concept of time zone; tutorial with different astronomical problems. **10** L

SDOAST104: Instruments and Basic data Analysis

Electromagnetic waves and propagation:

Wave Equation. Electromagnetic waves. Properties of electromagnetic waves. Propagation of electromagnetic waves. Modes of propagation of electromagnetic waves (Ground waves, Sky waves and Space waves). Direction of propagation of electromagnetic waves. Transverse nature of light waves. Plane polarized light Circular polarization 8L

Electromagnetic spectrum: Blackbody radiation – Planck law, Wien's law and Rayleigh Jean's approximation; Electromagnetic waves in the electromagnetic spectrum. Properties and applications of Gamma ray, X-rays, UV rays, Visible light, IR rays, Microwaves and Radio waves. Significance of the Electromagnetic Spectrum. The colours of stars. Ultraviolet astronomy. Aurora. Electromagnetic spectrum and Astronomical observations; Multiwavelength observations of Milky ways and overview of Interstellar medium (ISM)

Magnitude system – Apparent, Absolute, and bolometric magnitudes

4L

CREDIT: 3

Quantification of Radiations: Stellar luminosity, effective temperature and other fundamental parameters; and stellar radiation; Spectral type of stars

3L

Astronomical instruments – Telescopes and it's capability; Brief history of telescope development – Galileo to Large telescopes; Optical configuration of different-type telescopes (Newtonian; Cassegrain; Dobsonian Telescope) and related parameters; Brief of different telescope mounts; Detection limits, Magnification; Light gathering power

Indian Telescopes : Ground and Space-based facilities; Major International optical/Infrared telescope facilities

10L

Detectors: Introduction; Detector types; The eye; semiconductors; Detector parameters; Optical and Infrared detection (PMT, Photographic, CCD, Near-IR arrays and CMOS); Ultraviolet detection; X-ray detector; Gamma ray Detector; Neutron detector; Astronomical filters; Understanding of Signal-to-Noise Ration; Schematic of spectrograph

12L